Part of the D-dimensional spiked harmonic oscillator spectra

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 335207
(http://iopscience.iop.org/0305-4470/33/29/305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:28

Please note that terms and conditions apply.

Part of the D-dimensional spiked harmonic oscillator spectra

Omar Mustafa and Maen Odeh
Department of Physics, Eastern Mediterranean University, G Magusa, North Cyprus, Mersin 10, Turkey
E-mail: omustafa.as@mozart.emu.edu.tr

Received 3 March 2000, in final form 26 May 2000

Abstract

The pseudoperturbative shifted- l expansion technique (PSLET) is generalized for states with an arbitrary number of nodal zeros. Interdimensional degeneracies, emerging from the isomorphism between the angular momentum and the dimensionality of the central force Schrödinger equation, are used to construct part of the D-dimensional spiked harmonic oscillator bound-state spectra. PSLET results are found to compare excellently with those from direct numerical integration and generalized variational methods.

1. Introduction

The simplest model of realistic interaction potentials in atomic, molecular and nuclear physics is provided by the spiked harmonic oscillator

$$
\begin{equation*}
V(q)=c_{1} q^{2}+c_{2} q^{-b} \quad c_{1}, c_{2}, b>0 \quad q \in(0, \infty) \tag{1}
\end{equation*}
$$

The construction of its bound states has attracted attention over the last few years [1-9]. It is an interesting model not only because of being a singular potential representing a repulsive core in realistic interactions, but also because of its intrinsic properties in view of mathematical physics [10-16]. However, most of the studies on this model potential (1) have been devoted to one spatial dimension (1D, the hyperquantum limit in view of Herschbach [17, 18]). It was just very recently, to the best of our knowledge, that Hall and Saad generalized their variational analysis (see the first reference of [1]) and smooth transformation [2] methods, VAM and STM, respectively, to the D-dimensional case and studied its bound states. They have also used direct numerical integration (DNI) for the purposes of comparison. It is therefore interesting to carry out systematic studies of the bound-state spectra generated by this interesting class of singular potentials (1).

On the other hand, results from exactly solvable potentials (an interesting field of mathematical physics in itself) are essential ingredients for the description of realistic physical problems $[1-5,19]$. The solutions of these can be used in perturbation and pseudoperturbation theories, or they can be combined with numerical calculations. Nevertheless, in the simplest case, analytical calculations can aid numerical studies in areas where numerical techniques might not be safely controlled. For example, when bound-state wavefunctions with arbitrary nodal zeros are required for certain singular potentials (a next level of complexity), analytical solutions can supply a basis for numerical calculations. Moreover, in many problems the Hamiltonian does not contain any physical parameter suitable for a perturbation expansion
treatment. More often, the Hamiltonian contains physical parameters, but, typically, zerothorder solutions for special values of these are not tractable or good starting approximations. One therefore resorts to variational calculations [1], pseudoperturbation expansions (artificial in nature) [5, 18-26], etc.

Recently, we have introduced a pseudoperturbative shifted- l (l is the angular momentum quantum number) expansion technique (PSLET) to solve for nodeless states of the Schrödinger equation. It simply consists of using $1 / \bar{l}$ as a pseudoperturbation parameter, where $\bar{l}=l-\beta$ and β is a suitable shift. The shift β is vital as it removes the poles that would emerge, at lowest orbital states with $l=0$, in our proposed expansions below. Our analytical, or often semianalytical, methodical proposal PSLET has been successfully applied to the quasirelativistic harmonic oscillator [20], spiked harmonic oscillator [5], anharmonic oscillators [21] and to the two-dimensional (flatland, in view of Godson and López- Cabrera in [17]) hydrogenic atom in an arbitrary magnetic field [22].

Encouraged by its satisfactory performance in handling nodeless states, we generalize the PSLET recipe (in section 2) for states with an arbitrary number of nodal zeros, $k \geqslant 0$. Moreover, in the underlying 'radical' time-independent radial Schrödinger equation, in $\hbar=m=1$ units

$$
\begin{equation*}
\left[-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} q^{2}}+\frac{l(l+1)}{2 q^{2}}+V(q)\right] \Psi_{k, l}(q)=E_{k, l} \Psi_{k, l}(q) \tag{2}
\end{equation*}
$$

the isomorphism between the orbital angular momentum l and the dimensionality D invites interdimensional degeneracies [17]. Which, in effect, allows us to generate the ladder of excited states for any given k and non-zero l from the $l=0$ result, with that k, by the transcription $D \longrightarrow D+2 l$. That is, if $E_{k, l}(D)$ is the eigenvalue in D dimensions, then

$$
\begin{equation*}
E_{k, l}(2) \equiv E_{k, l-1}(4) \equiv \cdots \equiv E_{k, 1}(2 l) \equiv E_{k, 0}(2 l+2) \tag{3}
\end{equation*}
$$

for even D, and

$$
\begin{equation*}
E_{k, l}(3) \equiv E_{k, l-1}(5) \equiv \cdots \equiv E_{k, 1}(2 l+1) \equiv E_{k, 0}(2 l+3) \tag{4}
\end{equation*}
$$

for odd D. For more details the reader may refer to [17, 18, 27]. We therefore calculate, in section 3, the energies for $D=2$ and 3 spiked harmonic oscillators, for a given number of nodes k and different values of l, and construct part of its D-dimensional bound-state spectra. We compare our results with those reported by Hall and Saad via generalized variational analysis VAM, and direct numerical integration methods [1,2]. Section 4 is devoted to concluding remarks.

2. The generalization of PSLET

With the shifted angular momentum, equation (2) reads

$$
\begin{equation*}
\left\{-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} q^{2}}+\frac{\bar{l}^{2}+(2 \beta+1) \bar{l}+\beta(\beta+1)}{2 q^{2}}+\frac{\bar{l}^{2}}{Q} V(q)\right\} \Psi_{k, l}(q)=E_{k, l} \Psi_{k, l}(q) \tag{5}
\end{equation*}
$$

where Q is a constant that scales the potential $V(q)$ at large- l_{D} limit (the pseudoclassical limit [17]) and is set, for any specific choice of l_{D} and k, equal to \bar{l}^{2} at the end of the calculations. Here $l_{D}=l+(D-3) / 2$, to incorporate the interdimensional degeneracies associated with the isomorphism between the angular momentum and the dimensionality D. Hence, $\bar{l} \longrightarrow \bar{l}=l_{D}-\beta$ throughout this paper. Next, we shift the origin of the coordinate system through $x=\bar{l}^{1 / 2}\left(q-q_{0}\right) / q_{0}$, where q_{0} is currently an arbitrary point to be determined
below. Expansions about this point (see the appendix for more details), $x=0$ (i.e. $q=q_{0}$), obviously localize the problem at an arbitrary point q_{0} and the derivatives, in effect, contain information not only at q_{0} but also at any point on the q-axis, in accordance with Taylor's theorem. It is then convenient to expand $E_{k, l}$ as

$$
\begin{equation*}
E_{k, l}=\sum_{n=-2}^{\infty} E_{k, l}^{(n)} \bar{l}^{-n} \tag{6}
\end{equation*}
$$

Equation (5) thus becomes

$$
\begin{equation*}
\left[-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\sum_{n=0}^{\infty} v^{(n)} \bar{l}^{-n / 2}\right] \Psi_{k, l}(x)=\left[\sum_{n=1}^{\infty} q_{0}^{2} E_{k, l}^{(n-1)} \bar{l}^{-n}\right] \Psi_{k, l}(x) . \tag{7}
\end{equation*}
$$

Up to this point, one would conclude that the above procedure is nothing but an imitation of the eminent shifted large- N expansion (SLNT) [25, 26, 28-30]. However, because of the limited capability of SLNT in handling large-order corrections via the standard RayleighSchrödinger perturbation theory, only low-order corrections have been reported, in effect sacrificing its preciseness. Therefore, one should seek for an alternative and proceed by setting the wavefunctions with any number of nodes as

$$
\begin{equation*}
\Psi_{k, l}(x(q))=F_{k, l}(x) \exp \left(U_{k, l}(x)\right) . \tag{8}
\end{equation*}
$$

In turn, equation (7) readily transforms into the following Riccati equation:

$$
\begin{gather*}
F_{k, l}(x)\left[-\frac{1}{2}\left(U_{k, l}^{\prime \prime}(x)+U_{k, l}^{\prime}(x) U_{k, l}^{\prime}(x)\right)+\sum_{n=0}^{\infty} v^{(n)}(x) \bar{l}^{-n / 2}-\sum_{n=1}^{\infty} q_{0}^{2} E_{k, l}^{(n-1)} \bar{l}^{-n}\right] \\
-F_{k, l}^{\prime}(x) U_{k, l}^{\prime}(x)-\frac{1}{2} F_{k, l}^{\prime \prime}(x)=0 \tag{9}
\end{gather*}
$$

where the primes denote derivatives with respect to x. It is evident that this equation admits solution of the form

$$
\begin{align*}
& U_{k, l}^{\prime}(x)=\sum_{n=0}^{\infty} U_{k}^{(n)}(x) \bar{l}^{-n / 2}+\sum_{n=0}^{\infty} G_{k}^{(n)}(x) \bar{l}^{-(n+1) / 2} \tag{10}\\
& F_{k, l}(x)=x^{k}+\sum_{n=0}^{\infty} \sum_{p=0}^{k-1} a_{p, k}^{(n)} x^{p} \bar{l}^{-n / 2} \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
U_{k}^{(n)}(x) & =\sum_{m=0}^{n+1} D_{m, n, k} x^{2 m-1} \quad D_{0, n, k}=0 \tag{12}\\
G_{k}^{(n)}(x) & =\sum_{m=0}^{n+1} C_{m, n, k} x^{2 m} \tag{13}
\end{align*}
$$

Substituting equations (10)-(13) into equation (9) implies

$$
\begin{aligned}
& F_{k, l}(x)\left[-\frac{1}{2} \sum_{n=0}^{\infty}\left(U_{k}^{(n){ }^{\prime}} \bar{l}^{-n / 2}+G_{k}^{(n)^{\prime}} \bar{l}^{-(n+1) / 2}\right)\right. \\
& \quad-\frac{1}{2} \sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(U_{k}^{(m)} U_{k}^{(n-m)} \bar{l}^{-n / 2}+G_{k}^{(m)} G_{k}^{(n-m)} \bar{l}^{-(n+2) / 2}+2 U_{k}^{(m)} G_{k}^{(n-m)} \bar{l}^{-(n+1) / 2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.+\sum_{n=0}^{\infty} v^{(n)} \bar{l}^{-n / 2}-\sum_{n=1}^{\infty} q_{0}^{2} E_{k, l}^{(n-1)} \bar{l}^{-n}\right] \\
& -F_{k, l}^{\prime}(x)\left[\sum_{n=0}^{\infty}\left(U_{k}^{(n)} \bar{l}^{-n / 2}+G_{k}^{(n)} \bar{l}^{-(n+1) / 2}\right)\right]-\frac{1}{2} F_{k, l}^{\prime \prime}(x)=0 \tag{14}
\end{align*}
$$

The above procedure obviously reduces to that described by Mustafa and Odeh [5, 20-22], for $k=0$. Moreover, the solution of equation (14) follows from the uniqueness of the power-series representation. Therefore, for a given k we equate the coefficients of the same powers of \bar{l} and x, respectively. For example, when $k=1$ one obtains

$$
\begin{align*}
& D_{1,0,1}=-w \quad U_{1}^{(0)}(x)=-w x \tag{15}\\
& C_{1,0,1}=-\frac{B_{3}}{w} \quad a_{0,1}^{(1)}=-\frac{C_{0,0,1}}{w} \tag{16}\\
& C_{0,0,1}=\frac{1}{w}\left(2 C_{1,0,1}+2 \beta+1\right) \tag{17}\\
& D_{2,2,1}=\frac{1}{w}\left(\frac{1}{2} C_{1,0,1}^{2}-B_{4}\right) \tag{18}\\
& D_{1,2,1}=\frac{1}{w}\left(\frac{5}{2} D_{2,2,1}+C_{0,0,1} C_{1,0,1}-\frac{3}{2}(2 \beta+1)\right) \tag{19}\\
& E_{1, l}^{(0)}=\frac{1}{q_{0}^{2}}\left(\frac{1}{2} \beta(\beta+1)+a_{0,1}^{(1)} C_{1,0,1}-\frac{3}{2} D_{1,2,1}-\frac{1}{2} C_{0,0,1}^{2}\right) \tag{20}
\end{align*}
$$

etc. Here, we reported the non-zero coefficients only and give the definitions of the related parameters in the appendix. One can then calculate the energy eigenvalues and eigenfunctions from knowledge of $C_{m, n, k}, D_{m, n, k}$ and $a_{p, k}^{(n)}$ in a hierarchical manner. Nevertheless, the procedure just described is suitable for a software package such as Maple to determine the energy eigenvalue and eigenfunction corrections up to any order of the pseudoperturbation series (6).

Although the energy series, equation (6), could appear divergent, or, at best, asymptotic for small \bar{l}, one can still calculate the eigenenergies to a very good accuracy by forming the sophisticated [N, M] Padé approximation [24]

$$
P_{N}^{M}(1 / \bar{l})=\left(P_{0}+P_{1} / \bar{l}+\cdots+P_{M} / \bar{l}{ }^{M}\right) /\left(1+q_{1} / \bar{l}+\cdots+q_{N} / \bar{l}^{N}\right)
$$

to the energy series (6). The energy series (6) is calculated up to $E_{k, l}^{(8)} / /^{8}$ by

$$
\begin{equation*}
E_{k, l}=\bar{l}^{2} E_{k, l}^{(-2)}+E_{k, l}^{(0)}+\cdots+E_{k, l}^{(8)} / \bar{l}^{8}+\mathrm{O}\left(1 / \bar{l}^{9}\right) \tag{21}
\end{equation*}
$$

and with the $P_{4}^{4}(1 / \bar{l})$ Padé approximant it becomes

$$
\begin{equation*}
E_{k, l}[4,4]=\bar{l}^{2} E_{k, l}^{(-2)}+P_{4}^{4}(1 / \bar{l}) \tag{22}
\end{equation*}
$$

Our recipe is therefore well prescribed.

3. D-spiked harmonic oscillator spectra

In this section we consider the spiked harmonic oscillator potential (1) and illustrate the abovementioned procedure. The substitution of equation (1) in (A16), for $k \geqslant 0$, implies

$$
\begin{equation*}
w=\sqrt{\frac{8 c_{1} q_{0}+b c_{2}(b-2) q_{0}^{-(b+1)}}{2 c_{1} q_{0}-b c_{2} q_{0}^{-(b+1)}}} \quad \beta=-\frac{1}{2}(1+[2 k+1] w) \tag{23}
\end{equation*}
$$

Equation (A15), in turn, reads
$l_{D}+\frac{1}{2}\left(1+[2 k+1] \sqrt{\frac{8 c_{1} q_{0}+b c_{2}(b-2) q_{0}^{-(b+1)}}{2 c_{1} q_{0}-b c_{2} q_{0}^{-(b+1)}}}\right)=q_{0}^{2} \sqrt{c_{1}-\frac{1}{2} b c_{2} q_{0}^{-(b+2)}}$
which is explicit in q_{0}. However, in the absence of a closed-form solution for q_{0}, which is often the case (hence the notion that PSLET is often semianalytical), numerical solutions of (24) could resolve this issue. Once q_{0} is determined the coefficients $C_{m, n, k}, D_{m, n, k}$ and $a_{p, k}^{(n)}$ are determined in a sequential manner. Hence, the eigenvalues, equation (21), and eigenfunctions, equations (10)-(13), are calculated in the same batch for each value of k, D, l, c_{1}, c_{2} and b.

Table 1 shows PSLET results for the ground-state energies, covering a wide range of the coupling c_{2} when $b=2.5$, along with those reported by Hall and Saad ([1], first reference), via a generalized variational analysis and direct numerical integration methods. Using the

Table 1. 3D ground-state energies, in $\hbar=m=1$ units, for $V(q)=\left(q^{2}+c_{2} / q^{5 / 2}\right) / 2$, where E_{P} represents PSLET results, equation (21), and $\bar{l}^{2} E^{(-2)}$ is its zeroth-order approximation. $E[4,4]$ shows the effect of the $P_{4}^{4}(1 / \bar{l})$ Padé approximant, equation (22). E_{VAM} from VAM, and E_{DNI} from DNI [1], first reference.

c_{2}	$\bar{l}^{2} E^{(-2)}$	E_{P}	$E[4,4]$	E_{VAM}	E_{DNI}
1000	44.003142	44.9554848	44.9554848	44.955485	44.955485
100	16.666664	17.541890	17.541890	17.541890	17.541890
10	7.00149	7.73515	7.73510	7.73511	7.73511
1	3.84771	4.31578	4.31413	4.32326	4.31731
0.1	3.11132	3.26984	3.26633	3.29602	3.26687
0.01	3.0116	3.0341	3.0344	3.0392	3.0367
0.001	3.0012	3.0035	3.0040	3.0041	3.0040

Table 2. $D=2, \ldots, 10$ ground-state energies, in $\hbar=m=1$ units, for the potential $V(q)=\left(q^{2}+10 / q^{1.9}\right) / 2$, where E_{P} represents PSLET results, equation (21), and $\bar{l}^{2} E^{(-2)}$ is its zeroth-order approximation, $E[4,4]$ shows the effect of the $P_{4}^{4}(1 / \bar{l})$ Padé approximant, equation (22). E_{VAM} from VAM, and E_{DNI} from DNI ([1], first reference).

D	$\bar{l}^{2} E^{(-2)}$	E_{P}	$E[4,4]$	E_{VAM}	E_{DNI}
2	7.581139	8.485461	8.485369	8.485384	8.485378
3	7.919880	8.564352	8.564355	8.564358	8.564356
4	8.339920	8.795436	8.795440	8.795440	8.795440
5	8.840678	9.163092	9.163093	9.163093	9.163093
6	9.416352	9.646701	9.646701	9.646701	9.646701
7	10.058042	10.225045	10.225045	10.225045	10.225045
8	10.755870	10.879077	10.879077	10.879077	10.879077
9	11.500402	11.592982	11.592982	11.592982	11.592982
10	12.283349	12.354183	12.354183	12.354183	12.354183

Table 3. 2D and 3D nodeless states energies, with $l=0, \ldots, 4$ (in $\hbar=m=1$ units), for the potential $V(q)=\left(q^{2}+1000 / q^{b}\right) / 2$, where $E_{0, l}$ represents PSLET results with the $P_{4}^{4}(1 / \bar{l})$ Padé approximant, equation (22).

D	b	$E_{0,0}$	$E_{0,1}$	$E_{0,2}$	$E_{0,3}$	$E_{0,4}$
2	0.5	415.886751	415.898889	415.935293	415.995938	416.080780
	1	190.719321	190.735267	190.783089	190.862739	190.974135
	1.5	104.404517	104.427341	104.495769	104.609681	104.768874
	2	65.245553	65.277168	65.371918	65.529521	65.749510
	2.5	44.945030	44.986838	45.112071	45.320150	45.610129
	3	33.303511	33.356491	33.515080	33.778229	34.144222
3	0.5	415.889786	415.914059	415.962588	416.035338	416.132258
	1	190.72331	190.755196	190.818940	190.914475	191.041704
	1.5	104.41022	104.455860	104.547051	104.683633	104.865367
	2	65.253459	65.316665	65.442888	65.631753	65.882705
	2.5	44.95549	45.039054	45.205805	45.454976	45.785438
	3	33.31676	33.422634	33.633677	33.948503	34.365078

Table 4. 2D and 3D k-state energies, in $\hbar=m=1$ units, for the potential $V(q)=$ $\left(q^{2}+1000 / q^{3 / 2}\right) / 2$, where E_{P} represents PSLET results, equation (21), and $\bar{l}^{2} E^{(-2)}$ is its zerothorder approximation, $E[4,4]$ shows the effect of the $P_{4}^{4}(1 / \bar{l})$ Padé approximant, equation (22).

D	k	l	$\bar{l}^{2} E^{(-2)}$	E_{P}	$E[4,4]$
2	1	0	105.40419	108.15083	108.15083
		1	105.67466	108.17379	108.17379
		2	105.96940	108.24263	108.24263
3		3	106.28970	108.35721	108.35721
		0	105.53648	108.15657	108.15657
		1	105.81892	108.20248	108.20248
		2	106.12628	108.29421	108.29421
2	2	3	106.45983	108.43160	108.43160
		1	107.3876	111.9017	111.9017
		2	108.1127	111.9248	111.9248
3		0	107.5600	111.9940	111.9940
		1	107.9224	111.9536	111.9536
		2	108.3092	112.0459	112.0459

interdimensional degeneracies (equations (3) and (4)) or directly, the dimensionality D in l_{D}, we display the energies for $V(q)=\left(q^{2}+10 / q^{1.9}\right) / 2$ in table 2 . Clearly, our results compare excellently with those from direct numerical integrations. However, it should be noted that in [5] we have calculated the energy series up to $E_{0, l}^{(4)} / \bar{l}^{4}$ correction. Therefore, slight discrepancies obtain between the present results in table 1 and those reported in table 2 of [5].

Adhering to the implicated wisdom in equations (3) and (4), that the two- and threedimensional cases are the basic ingredients of the energy ladder at larger dimensions, we report (in table 3) the 2D and 3D nodal bound-state energies when the coupling $c_{2}=1000$ and $b=0.5,1, \ldots, 2.5,3$. The stability of the last three approximants of the Pade sequence indicates that the results are exact. For more details on this issue the reader may refer to [20,24]. Nevertheless, our results $E_{0,0}$ for the 3D spiked harmonic oscillator are in exact accord with those from direct numerical integrations [2]. Following the same strategy, we display in table 4 the $k=1$ and 2 nodal bound-state energies for $V(q)=\left(q^{2}+1000 / q^{3 / 2}\right) / 2$.

Eventually, the leading term of PSLET, $\bar{l}^{2} E_{k, l}^{(-2)}$, turns out to be a good starting approximation. Tables 1, 2 and 4 bear this out.

Moreover, for the spiked harmonic oscillator, with $b=2$, one would rewrite the effective potential term $\left(l(l+1)+c_{2}\right) / 2 q^{2}+q^{2} / 2$ as $l^{\prime}\left(l^{\prime}+1\right) / 2 q^{2}+q^{2} / 2$ with $l^{\prime}=-\frac{1}{2}+\sqrt{\left(l+\frac{1}{2}\right)^{2}+c_{2}}$. For this particular case, the PSLET procedure yields, respectively, $w=2, \beta=-\left(2 k+\frac{3}{2}\right)$, $\bar{l}=2 k+l^{\prime}+\frac{3}{2}, q_{0}^{2}=\bar{l}, \bar{l}^{2} E_{k, l^{\prime}}^{(-2)}=2 k+l^{\prime}+\frac{3}{2}$ (the exact well known energies)

$$
\begin{equation*}
E_{k, l^{\prime}}^{(0)}=E_{k, l^{\prime}}^{(1)}=\cdots=E_{k, l^{\prime}}^{(8)}=\cdots=E_{k, l^{\prime}}^{(n)}=0 \tag{25}
\end{equation*}
$$

and when $k=0$, for example,

$$
\begin{align*}
U_{0, l^{\prime}}(x)=-\frac{1}{2} & \left(y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+\frac{1}{5} y^{5}-\frac{1}{6} y^{6}+\frac{1}{7} y^{7}-\frac{1}{8} y^{8}+\cdots\right) \\
& \quad+\bar{l}\left(y-\frac{1}{2} y^{2}+\frac{1}{3} y^{3}-\frac{1}{4} y^{4}+\frac{1}{5} y^{5}-\frac{1}{6} y^{6}+\frac{1}{7} y^{7}-\frac{1}{8} y^{8}+\cdots\right)-\frac{1}{2} \bar{l} y^{2}-\bar{l} y \tag{26}
\end{align*}
$$

where $y=x \bar{l}^{-1 / 2}$. Obviously, the terms in parentheses in equation (26) are the infinite geometric series expansions for $\ln (1+y)$. Equation (26) thus becomes

$$
\begin{equation*}
U_{0, l^{\prime}}(x)=\ln (1+y)^{-1 / 2}+\ln (1+y)^{\bar{l}}-\bar{l} y-\frac{1}{2} \bar{l} y^{2} . \tag{27}
\end{equation*}
$$

Hence equation (8) (with $F_{0, l^{\prime}}(x)=1$ from (11)) reads

$$
\begin{equation*}
\Psi_{0, l^{\prime}}(q)=N_{0, l^{\prime}} q^{l^{\prime}+1} \mathrm{e}^{-q^{2} / 2} \tag{28}
\end{equation*}
$$

the exact well known solutions [31], where $N_{0, l^{\prime}}$ are the normalization constants. Proceeding exactly as above, one could obtain the well known solutions with $k \geqslant 1$. However, this already lies far beyond the scope of our present proposal.

Hall and Saad ([1], first reference) have therefore used, indirectly, the transformation of the angular momentum quantum number and cast the Hamiltonian of the spiked harmonic oscillator (1) as

$$
\begin{equation*}
H=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} q^{2}}+\frac{l_{\mathrm{H}}\left(l_{\mathrm{H}}+1\right)}{2 q^{2}}+\frac{q^{2}}{2}+\frac{c_{2}}{2 q^{b}}-\frac{A}{2 q^{2}} \tag{29}
\end{equation*}
$$

where $l_{\mathrm{H}}=-\frac{1}{2}+\sqrt{\left(l+\frac{1}{2}\right)^{2}+A}$, and A is used as a further variational refinement in their generalized variational analysis method. They found that $A=c_{2}$ is a good general estimate for the value of A. Indeed, this optimum value of A, which substantially reduced the number of the basis functions needed for a given accuracy in [1], first reference, enhances the convergence and accuracy of approximation method recipes. Practically, it minimizes the effect of the perturbation term $c_{2} q^{-b}$ over the harmonic oscillator one (with the irrational quantum number l^{\prime}), especially for values of $b \longrightarrow 2$. In table 5, the results of PSLET are obtained using such prescription. They compare excellently with direct numerical integrations and do not contradict the upper bounds from the generalized variational estimates.

4. Concluding remarks

We have generalized our pseudoperturbative shifted- l expansion technique PSLET [5, 20-22] for states with an arbitrary number of nodal zeros, $k \geqslant 0$. Starting with the central force problem, represented by the radial Schrödinger equation, and augmenting the orbital angular momentum by $l \longrightarrow l_{D}=l+(D-3) / 2$, we have incorporated interdimensional degeneracies. To test the performance of PSLET, we have treated the spiked harmonic oscillator problem in

Table 5. $k=2$ and $l=1,2$ energies, in units where $\hbar=m=1$, for the potential $V(q)=\left(q^{2}+10 / q^{2.1}\right) / 2$, where $E_{2, l, P}$ represents PSLET results, equation (21), $E_{2,1, \mathrm{~V}}$ from VAM, and $E_{2,1, \text { ex }}$ from DNI [1], first reference. $E_{2, l}[4,4]$ shows the effect of the $P_{4}^{4}(1 / \bar{l})$ Padé approximant, equation (22).

D	$E_{2,1, \mathrm{ex}}$	$E_{2,1, \mathrm{~V}}$	$E_{2,1, P}$	$E_{2,1}[4,4]$	$E_{2,2, P}$	$E_{2,2}[4,4]$
2	16.543629	16.543648	16.541951	16.543627	17.380817	17.381708
3	16.904445	16.904446	16.903172	16.904444	17.954856	17.955444
4	17.381708	17.381709	17.380817	17.381708	18.606695	18.607067
5	17.955444	17.955446	17.954856	17.955444	19.320461	19.320691
6	18.607067	18.607070	18.606695	18.607067	20.083266	20.083406
7	19.320691	19.320693	19.320461	19.320691	20.884936	20.885021
8	20.083406	20.083407	20.083266	20.083406	21.717556	21.717608
9	20.885021	20.885022	20.884936	20.885021	22.574996	22.575027
10	21.717608	21.717608	21.717556	21.717608	23.452505	23.452524

D dimensions and used results from direct numerical integrations and generalized variational analysis methods [1,2] as a comparison. The comparison is satisfactory.

The salient features of the attendant proposal PSLET are in order.
It avoids troublesome questions such as those pertaining to the nature of small parameter expansions, the trend of convergence to the exact numerical values (marked in tables 1-3 and 5), the utility in calculating the eigenvalues and eigenfunctions in one batch to sufficiently higher orders (documented through the solution (28) of (1), with $b=2$) and the applicability to a wide range of potentials. Provided that the potential $V(q)$ gives rise to one minimum of $E_{k, l}^{(-2)}$ and an infinite number of bound states. Moreover, beyond its promise of being quite handy (on the computational and practical methodical sides), it offers a useful perturbation prescription where the zeroth-order approximation $\bar{l}^{2} E_{k, l}^{(-2)}$ inherits a substantial amount of the total energy.

The above has been a very limited review and a number of other useful and novel approaches such as those presented by Papp [9,32] and Bender and Wu [33], have not been touched on.

Finally, the scope of applicability of PSLET extends beyond the present D-dimensional spiked harmonic oscillator model. It could be applied to angular momentum states of multielectron atoms [34-36], relativistic and non-relativistic quark-antiquark models [37], etc.

Appendix

Although some of the following expressions have appeared in previous articles [5, 20-22], we would like to repeat them to make this paper self-contained.

Expansions about $x=0$ (i.e. $q=q_{0}$), yield

$$
\begin{align*}
& \frac{1}{q^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)}{q_{0}^{2}} x^{n} \bar{l}^{-n / 2} \tag{A1}\\
& V(x(q))=\sum_{n=0}^{\infty}\left(\frac{\mathrm{d}^{n} V\left(q_{0}\right)}{\mathrm{d} q_{0}^{n}}\right) \frac{\left(q_{0} x\right)^{n}}{n!} \bar{l}^{-n / 2} . \tag{A2}
\end{align*}
$$

Equation (5) thus becomes

$$
\begin{equation*}
\left[-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{q_{0}^{2}}{\bar{l}} \tilde{V}(x(q))\right] \Psi_{k, l}(x)=\frac{q_{0}^{2}}{\bar{l}} E_{k, l} \Psi_{k, l}(x) \tag{A3}
\end{equation*}
$$

with
$\frac{q_{0}^{2}}{\bar{l}} \tilde{V}(x(q))=q_{0}^{2} \bar{l}\left[\frac{1}{2 q_{0}^{2}}+\frac{V\left(q_{0}\right)}{Q}\right]+\bar{l}^{1 / 2} B_{1} x+B_{2} x^{2}+\frac{1}{2}(2 \beta+1)$
$+(2 \beta+1) \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2}(n+1) x^{n} \bar{l}^{-n / 2}+\sum_{n=3}^{\infty} B_{n} x^{n} \bar{l}^{-(n-2) / 2}$
$+\beta(\beta+1) \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2}(n+1) x^{n} \bar{l}^{-(n+2) / 2}$
$B_{n}=(-1)^{n} \frac{1}{2}(n+1)+\left(\frac{\mathrm{d}^{n} V\left(q_{0}\right)}{\mathrm{d} q_{0}^{n}}\right) \frac{q_{0}^{n+2}}{n!Q}$.
Equation (A3), along with (A4) and (A5), is evidently the one-dimensional Schrödinger equation for a perturbed harmonic oscillator

$$
\begin{equation*}
\left[-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} w^{2} x^{2}+\varepsilon_{0}+P(x)\right] X_{k}(x)=\lambda_{k} X_{k}(x) \tag{A6}
\end{equation*}
$$

where $w^{2}=2 B_{2}$,

$$
\begin{equation*}
\varepsilon_{0}=\bar{l}\left[\frac{1}{2}+\frac{q_{0}^{2} V\left(q_{0}\right)}{Q}\right]+\frac{2 \beta+1}{2}+\frac{\beta(\beta+1)}{2 \bar{l}} \tag{A7}
\end{equation*}
$$

and $P(x)$ represents the remaining terms in equation (A4) as infinite power series perturbations to the harmonic oscillator. One would then imply that
$\lambda_{k}=\bar{l}\left[\frac{1}{2}+\frac{q_{0}^{2} V\left(q_{0}\right)}{Q}\right]+\left[\frac{1}{2}(2 \beta+1)+\left(k+\frac{1}{2}\right) w\right]+\frac{1}{\bar{l}}\left[\frac{1}{2} \beta(\beta+1)+\lambda_{k}^{(0)}\right]+\sum_{n=2}^{\infty} \lambda_{k}^{(n-1)} \bar{l}-n$
and

$$
\begin{equation*}
\lambda_{k}=q_{0}^{2} \sum_{n=-2}^{\infty} E_{k, l}^{(n)} \bar{l}^{-(n+1)} \tag{A9}
\end{equation*}
$$

Hence, equations (A8) and (A9) yield

$$
\begin{align*}
& E_{k, l}^{(-2)}=\frac{1}{2 q_{0}^{2}}+\frac{V\left(q_{0}\right)}{Q} \tag{A10}\\
& E_{k, l}^{(-1)}=\frac{1}{q_{0}^{2}}\left[\frac{1}{2}(2 \beta+1)+\left(k+\frac{1}{2}\right) w\right] \tag{A11}\\
& E_{k, l}^{(0)}=\frac{1}{q_{0}^{2}}\left[\frac{1}{2} \beta(\beta+1)+\lambda_{k}^{(0)}\right] \tag{A12}\\
& E_{k, l}^{(n)}=\lambda_{k}^{(n)} / q_{0}^{2} \quad n \geqslant 1 \tag{A13}
\end{align*}
$$

where q_{0} is chosen to minimize $E_{k, l}^{(-2)}$, i.e.

$$
\begin{equation*}
\frac{\mathrm{d} E_{k, l}^{(-2)}}{\mathrm{d} q_{0}}=0 \quad \text { and } \quad \frac{\mathrm{d}^{2} E_{k, l}^{(-2)}}{\mathrm{d} q_{0}^{2}}>0 \tag{A14}
\end{equation*}
$$

Thereby, $V(q)$ is assumed to be well behaved so that $E_{k, l}^{(-2)}$ has a minimum q_{0} and there are well defined bound states. Equation (A14) in turn gives, with $\bar{l}=\sqrt{Q}$

$$
\begin{equation*}
l_{D}-\beta=\sqrt{q_{0}^{3} V^{\prime}\left(q_{0}\right)} \tag{A15}
\end{equation*}
$$

Consequently, the second term in equation (A4) vanishes and the first term adds a constant to the energy eigenvalues. It should be noted that the energy term $\bar{l}^{2} E_{k, l}^{(-2)}$ corresponds roughly to the energy of a classical particle with angular momentum $L_{z}=\bar{l}$ executing circular motion of radius q_{0} in the potential $V\left(q_{0}\right)$. It thus identifies the zeroth-order approximation, to all eigenvalues, as a classical approximation and the higher-order corrections as quantum fluctuations around the minimum q_{0}, organized in inverse powers of \bar{l}. The next correction to the energy series, $\bar{l} E_{k, l}^{(-1)}$, consists of a constant term and the exact eigenvalues of the harmonic oscillator $w^{2} x^{2} / 2$.The shifting parameter β is determined by choosing $\bar{l} E_{k, l}^{(-1)}=0$. This choice is physically motivated. In addition to its vital role in removing the singularity at $l=0$, it also requires agreement between PSLET eigenvalues and eigenfunctions with the exact well known ones for the harmonic oscillator and Coulomb potentials. Hence

$$
\begin{equation*}
\beta=-\left[\frac{1}{2}+\left(k+\frac{1}{2}\right) w\right] \tag{A16}
\end{equation*}
$$

where $w=\sqrt{3+q_{0} V^{\prime \prime}\left(q_{0}\right) / V^{\prime}\left(q_{0}\right)}$, and the primes of $V\left(q_{0}\right)$ denote derivatives with respect to q_{0}. Then equation (A4) reduces to

$$
\begin{equation*}
\frac{q_{0}^{2}}{\bar{l}} \tilde{V}(x(q))=q_{0}^{2} \bar{l}\left[\frac{1}{2 q_{0}^{2}}+\frac{V\left(q_{0}\right)}{Q}\right]+\sum_{n=0}^{\infty} v^{(n)}(x) \bar{l}^{-n / 2} \tag{A17}
\end{equation*}
$$

where

$$
\begin{align*}
v^{(0)}(x) & =B_{2} x^{2}+\frac{1}{2}(2 \beta+1) \tag{A18}\\
v^{(1)}(x) & =-(2 \beta+1) x+B_{3} x^{3} \tag{A19}
\end{align*}
$$

and for $n \geqslant 2$

$$
\begin{equation*}
v^{(n)}(x)=B_{n+2} x^{n+2}+(-1)^{n}(2 \beta+1) \frac{1}{2}(n+1) x^{n}+(-1)^{n} \frac{1}{2} \beta(\beta+1)(n-1) x^{(n-2)} . \tag{A20}
\end{equation*}
$$

References

[1] Hall R L and Saad N 2000 J. Phys. A: Math. Gen. 33569 Hall R L and Saad N 1999 J. Phys. A: Math. Gen. 32133
[2] Hall R L and Saad N 1998 J. Phys. A: Math. Gen. 31963
[3] Hall R L, Saad N and Keviczky A 1998 J. Math. Phys. 396345
[4] Hall R L and Saad N 1997 J. Math. Phys. 384909
[5] Mustafa O and Odeh M 1999 J. Phys. B: At. Mol. Opt. Phys. 323055
[6] Znojil M 1999 Phys. Lett. A 2551
[7] Znojil M 1999 Phys. Lett. A 259220
[8] Znojil M 1992 Phys. Lett. A 169415
[9] Papp E 1989 Europhys. Lett. 9309
[10] Klauder J R 1973 Acta Phys. Austriaca Suppl. 11341
[11] Detwiler L C and Klauder J R 1975 Phys. Rev. D 111436
[12] Simon B 1973 J. Funct. Anal. 14295
[13] Harrell E M 1977 Ann. Phys. 105379
[14] Aguilera V C and Guardiola R 1991 J. Math. Phys. 322135
[15] Znojil M 1993 J. Math. Phys. 344914
[16] Flynn M F, Guardiola R and Znojil M 1993 Czech. J. Phys. 411019
[17] Herschbach D R et al 1993 Dimensional Scaling in Chemical Physics (Dordrecht: Kluwer)
[18] Herschbach D R 1986 J. Chem. Phys. 84838
[19] Levai G, Konya B and Papp Z 1998 J. Math. Phys. 395811
Znojil M 1997 J. Math. Phys. 385087
[20] Mustafa O and Odeh M 1999 J. Phys. A: Math. Gen. 326653
[21] Mustafa O and Odeh M 2000 Eur. Phys. J. B 15143
[22] Mustafa O and Odeh M 2000 Commun. Theor. Phys. 33469
[23] Maluendes S A, Fernandez F M and Castro E A 1987 Phys. Lett. A 124215
[24] Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)
[25] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Rev. D 291669
[26] Mustafa O and Chhajlany S C 1994 Phys. Rev. A 502926
[27] Taseli H 1996 J. Math. Chem. 20235
[28] Mustafa O 1996 J. Phys.: Condens. Matter 88073
[29] Barakat T, Odeh M and Mustafa O 1998 J. Phys. A: Math. Gen. 313469
[30] Mustafa O and Sever R 1991 Phys. Rev. A 444142
[31] Davydov A S 1976 Quantum Mechanics 2nd edn (Oxford: Pergamon)
[32] Papp E 1988 Phys. Rev. A 385910 Papp E 1988 Phys. Rep. 161171
[33] Bender C M and Wu T T 1969 Phys. Rev. 184123 Bender C M and Wu T T 1973 Phys. Rev. D 71620
[34] Dunn M and Watson D 1996 Few-Body Syst. 21187
[35] Dunn M and Watson D 1996 Ann. Phys. 251266
[36] Dunn M and Watson D 1999 Phys. Rev. A 591109
[37] Lichtenberg D et al 1990 Z. Phys. C 4675

