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Abstract. The pseudoperturbative shifted-l expansion technique (PSLET) is generalized for
states with an arbitrary number of nodal zeros. Interdimensional degeneracies, emerging from
the isomorphism between the angular momentum and the dimensionality of the central force
Schrödinger equation, are used to construct part of the D-dimensional spiked harmonic oscillator
bound-state spectra. PSLET results are found to compare excellently with those from direct
numerical integration and generalized variational methods.

1. Introduction

The simplest model of realistic interaction potentials in atomic, molecular and nuclear physics
is provided by the spiked harmonic oscillator

V (q) = c1q2 + c2q
−b c1, c2, b > 0 q ∈ (0,∞). (1)

The construction of its bound states has attracted attention over the last few years [1–9]. It is
an interesting model not only because of being a singular potential representing a repulsive
core in realistic interactions, but also because of its intrinsic properties in view of mathematical
physics [10–16]. However, most of the studies on this model potential (1) have been devoted
to one spatial dimension (1D, the hyperquantum limit in view of Herschbach [17, 18]). It was
just very recently, to the best of our knowledge, that Hall and Saad generalized their variational
analysis (see the first reference of [1]) and smooth transformation [2] methods, VAM and STM,
respectively, to theD-dimensional case and studied its bound states. They have also used direct
numerical integration (DNI) for the purposes of comparison. It is therefore interesting to carry
out systematic studies of the bound-state spectra generated by this interesting class of singular
potentials (1).

On the other hand, results from exactly solvable potentials (an interesting field of
mathematical physics in itself) are essential ingredients for the description of realistic physical
problems [1–5, 19]. The solutions of these can be used in perturbation and pseudoperturbation
theories, or they can be combined with numerical calculations. Nevertheless, in the simplest
case, analytical calculations can aid numerical studies in areas where numerical techniques
might not be safely controlled. For example, when bound-state wavefunctions with arbitrary
nodal zeros are required for certain singular potentials (a next level of complexity), analytical
solutions can supply a basis for numerical calculations. Moreover, in many problems the
Hamiltonian does not contain any physical parameter suitable for a perturbation expansion
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treatment. More often, the Hamiltonian contains physical parameters, but, typically, zeroth-
order solutions for special values of these are not tractable or good starting approximations.
One therefore resorts to variational calculations [1], pseudoperturbation expansions (artificial
in nature) [5, 18–26], etc.

Recently, we have introduced a pseudoperturbative shifted-l (l is the angular momentum
quantum number) expansion technique (PSLET) to solve for nodeless states of the Schrödinger
equation. It simply consists of using 1/l̄ as a pseudoperturbation parameter, where l̄ = l − β
and β is a suitable shift. The shift β is vital as it removes the poles that would emerge,
at lowest orbital states with l = 0, in our proposed expansions below. Our analytical, or
often semianalytical, methodical proposal PSLET has been successfully applied to the quasi-
relativistic harmonic oscillator [20], spiked harmonic oscillator [5], anharmonic oscillators
[21] and to the two-dimensional (flatland, in view of Godson and López- Cabrera in [17])
hydrogenic atom in an arbitrary magnetic field [22].

Encouraged by its satisfactory performance in handling nodeless states, we generalize
the PSLET recipe (in section 2) for states with an arbitrary number of nodal zeros, k � 0.
Moreover, in the underlying ‘radical’ time-independent radial Schrödinger equation, in
h̄ = m = 1 units[

−1

2

d2

dq2
+
l(l + 1)

2q2
+ V (q)

]
�k,l(q) = Ek,l�k,l(q) (2)

the isomorphism between the orbital angular momentum l and the dimensionality D invites
interdimensional degeneracies [17]. Which, in effect, allows us to generate the ladder of excited
states for any given k and non-zero l from the l = 0 result, with that k, by the transcription
D −→ D + 2l. That is, if Ek,l(D) is the eigenvalue in D dimensions, then

Ek,l(2) ≡ Ek,l−1(4) ≡ · · · ≡ Ek,1(2l) ≡ Ek,0(2l + 2) (3)

for even D, and

Ek,l(3) ≡ Ek,l−1(5) ≡ · · · ≡ Ek,1(2l + 1) ≡ Ek,0(2l + 3) (4)

for odd D. For more details the reader may refer to [17, 18, 27]. We therefore calculate, in
section 3, the energies forD = 2 and 3 spiked harmonic oscillators, for a given number of nodes
k and different values of l, and construct part of its D-dimensional bound-state spectra. We
compare our results with those reported by Hall and Saad via generalized variational analysis
VAM, and direct numerical integration methods [1, 2]. Section 4 is devoted to concluding
remarks.

2. The generalization of PSLET

With the shifted angular momentum, equation (2) reads{
−1

2

d2

dq2
+
l̄ 2 + (2β + 1)l̄ + β(β + 1)

2q2
+
l̄ 2

Q
V (q)

}
�k,l(q) = Ek,l�k,l(q) (5)

where Q is a constant that scales the potential V (q) at large-lD limit (the pseudoclassical
limit [17]) and is set, for any specific choice of lD and k, equal to l̄ 2 at the end of the
calculations. Here lD = l + (D − 3)/2, to incorporate the interdimensional degeneracies
associated with the isomorphism between the angular momentum and the dimensionality D.
Hence, l̄ −→ l̄ = lD − β throughout this paper. Next, we shift the origin of the coordinate
system through x = l̄ 1/2(q− q0)/q0, where q0 is currently an arbitrary point to be determined
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below. Expansions about this point (see the appendix for more details), x = 0 (i.e. q = q0),
obviously localize the problem at an arbitrary point q0 and the derivatives, in effect, contain
information not only at q0 but also at any point on the q-axis, in accordance with Taylor’s
theorem. It is then convenient to expand Ek,l as

Ek,l =
∞∑
n=−2

E
(n)
k,l l̄

−n. (6)

Equation (5) thus becomes[
−1

2

d2

dx2
+

∞∑
n=0

v(n)l̄ −n/2
]
�k,l(x) =

[ ∞∑
n=1

q2
0E
(n−1)
k,l l̄ −n

]
�k,l(x). (7)

Up to this point, one would conclude that the above procedure is nothing but an imitation
of the eminent shifted large-N expansion (SLNT) [25, 26, 28–30]. However, because of the
limited capability of SLNT in handling large-order corrections via the standard Rayleigh–
Schrödinger perturbation theory, only low-order corrections have been reported, in effect
sacrificing its preciseness. Therefore, one should seek for an alternative and proceed by
setting the wavefunctions with any number of nodes as

�k,l(x(q)) = Fk,l(x) exp(Uk,l(x)). (8)

In turn, equation (7) readily transforms into the following Riccati equation:

Fk,l(x)

[
− 1

2

(
U ′ ′
k,l(x) + U ′

k,l(x)U
′
k,l(x)

)
+

∞∑
n=0

v(n)(x)l̄ −n/2 −
∞∑
n=1

q2
0E
(n−1)
k,l l̄ −n

]

−F ′
k,l(x)U

′
k,l(x)− 1

2F
′ ′
k,l(x) = 0 (9)

where the primes denote derivatives with respect to x. It is evident that this equation admits
solution of the form

U ′
k,l(x) =

∞∑
n=0

U
(n)
k (x) l̄

−n/2 +
∞∑
n=0

G
(n)
k (x) l̄

−(n+1)/2 (10)

Fk,l(x) = xk +
∞∑
n=0

k−1∑
p=0

a
(n)
p,k x

p l̄ −n/2 (11)

where

U
(n)
k (x) =

n+1∑
m=0

Dm,n,k x
2m−1 D0,n,k = 0 (12)

G
(n)
k (x) =

n+1∑
m=0

Cm,n,k x
2m. (13)

Substituting equations (10)–(13) into equation (9) implies

Fk,l(x)

[
− 1

2

∞∑
n=0

(
U
(n)′
k l̄

−n/2 +G(n)
′

k l̄
−(n+1)/2

)

− 1
2

∞∑
n=0

n∑
m=0

(
U
(m)
k U

(n−m)
k l̄ −n/2 +G(m)k G

(n−m)
k l̄ −(n+2)/2 + 2U(m)k G

(n−m)
k l̄ −(n+1)/2

)
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+
∞∑
n=0

v(n)l̄ −n/2 −
∞∑
n=1

q2
0E
(n−1)
k,l l̄ −n

]

−F ′
k,l(x)

[ ∞∑
n=0

(
U
(n)
k l̄

−n/2 +G(n)k l̄
−(n+1)/2

)] − 1
2F

′ ′
k,l(x) = 0. (14)

The above procedure obviously reduces to that described by Mustafa and Odeh [5, 20–22], for
k = 0. Moreover, the solution of equation (14) follows from the uniqueness of the power-series
representation. Therefore, for a given k we equate the coefficients of the same powers of l̄ and
x, respectively. For example, when k = 1 one obtains

D1,0,1 = −w U
(0)
1 (x) = −wx (15)

C1,0,1 = −B3

w
a
(1)
0,1 = −C0,0,1

w
(16)

C0,0,1 = 1

w

(
2C1,0,1 + 2β + 1

)
(17)

D2,2,1 = 1

w

(
1
2C

2
1,0,1 − B4

)
(18)

D1,2,1 = 1

w

(
5
2 D2,2,1 + C0,0,1 C1,0,1 − 3

2 (2β + 1)
)

(19)

E
(0)
1,l = 1

q2
0

(
1
2β(β + 1) + a(1)0,1 C1,0,1 − 3

2D1,2,1 − 1
2C

2
0,0,1

)
(20)

etc. Here, we reported the non-zero coefficients only and give the definitions of the related
parameters in the appendix. One can then calculate the energy eigenvalues and eigenfunctions
from knowledge of Cm,n,k , Dm,n,k and a(n)p,k in a hierarchical manner. Nevertheless, the
procedure just described is suitable for a software package such as Maple to determine the
energy eigenvalue and eigenfunction corrections up to any order of the pseudoperturbation
series (6).

Although the energy series, equation (6), could appear divergent, or, at best, asymptotic
for small l̄, one can still calculate the eigenenergies to a very good accuracy by forming the
sophisticated [N,M] Padé approximation [24]

PMN (1/l̄) = (P0 + P1/l̄ + · · · + PM/l̄
M)/(1 + q1/l̄ + · · · + qN/l̄

N )

to the energy series (6). The energy series (6) is calculated up to E(8)k,l /l̄
8 by

Ek,l = l̄ 2E
(−2)
k,l + E(0)k,l + · · · + E(8)k,l /l̄

8 + O(1/l̄ 9) (21)

and with the P 4
4 (1/l̄) Padé approximant it becomes

Ek,l[4, 4] = l̄ 2E
(−2)
k,l + P 4

4 (1/l̄). (22)

Our recipe is therefore well prescribed.
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3. D-spiked harmonic oscillator spectra

In this section we consider the spiked harmonic oscillator potential (1) and illustrate the above-
mentioned procedure. The substitution of equation (1) in (A16), for k � 0, implies

w =
√√√√8c1q0 + bc2(b − 2)q−(b+1)

0

2c1q0 − bc2q−(b+1)
0

β = − 1
2 (1 + [2k + 1]w). (23)

Equation (A15), in turn, reads

lD +
1

2


1 + [2k + 1]

√√√√8c1q0 + bc2(b − 2)q−(b+1)
0

2c1q0 − bc2q−(b+1)
0


 = q2

0

√
c1 − 1

2bc2q
−(b+2)
0 (24)

which is explicit in q0. However, in the absence of a closed-form solution for q0, which is
often the case (hence the notion that PSLET is often semianalytical), numerical solutions of
(24) could resolve this issue. Once q0 is determined the coefficientsCm,n,k ,Dm,n,k and a(n)p,k are
determined in a sequential manner. Hence, the eigenvalues, equation (21), and eigenfunctions,
equations (10)–(13), are calculated in the same batch for each value of k, D, l, c1, c2 and b.

Table 1 shows PSLET results for the ground-state energies, covering a wide range of the
coupling c2 when b = 2.5, along with those reported by Hall and Saad ([1], first reference),
via a generalized variational analysis and direct numerical integration methods. Using the

Table 1. 3D ground-state energies, in h̄ = m = 1 units, for V (q) = (q2 + c2/q5/2)/2, where EP
represents PSLET results, equation (21), and l̄ 2E(−2) is its zeroth-order approximation. E[4, 4]
shows the effect of the P 4

4 (1/l̄) Padé approximant, equation (22). EVAM from VAM, and EDNI
from DNI [1], first reference.

c2 l̄ 2E(−2) EP E[4, 4] EVAM EDNI

1000 44.003 142 44.955 4848 44.955 4848 44.955 485 44.955 485
100 16.666 664 17.541 890 17.541 890 17.541 890 17.541 890

10 7.001 49 7.735 15 7.735 10 7.735 11 7.735 11
1 3.847 71 4.315 78 4.314 13 4.323 26 4.317 31
0.1 3.111 32 3.269 84 3.266 33 3.296 02 3.266 87
0.01 3.011 6 3.034 1 3.034 4 3.039 2 3.036 7
0.001 3.001 2 3.003 5 3.004 0 3.004 1 3.004 0

Table 2. D = 2, . . . , 10 ground-state energies, in h̄ = m = 1 units, for the potential
V (q) = (q2 + 10/q1.9)/2, where EP represents PSLET results, equation (21), and l̄ 2E(−2)

is its zeroth-order approximation, E[4, 4] shows the effect of the P 4
4 (1/l̄) Padé approximant,

equation (22). EVAM from VAM, and EDNI from DNI ([1], first reference).

D l̄ 2E(−2) EP E[4, 4] EVAM EDNI

2 7.581 139 8.485 461 8.485 369 8.485 384 8.485 378
3 7.919 880 8.564 352 8.564 355 8.564 358 8.564 356
4 8.339 920 8.795 436 8.795 440 8.795 440 8.795 440
5 8.840 678 9.163 092 9.163 093 9.163 093 9.163 093
6 9.416 352 9.646 701 9.646 701 9.646 701 9.646 701
7 10.058 042 10.225 045 10.225 045 10.225 045 10.225 045
8 10.755 870 10.879 077 10.879 077 10.879 077 10.879 077
9 11.500 402 11.592 982 11.592 982 11.592 982 11.592 982

10 12.283 349 12.354 183 12.354 183 12.354 183 12.354 183
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Table 3. 2D and 3D nodeless states energies, with l = 0, . . . , 4 (in h̄ = m = 1 units), for the
potential V (q) = (q2 + 1000/qb)/2, where E0,l represents PSLET results with the P 4

4 (1/l̄) Padé
approximant, equation (22).

D b E0,0 E0,1 E0,2 E0,3 E0,4

2 0.5 415.886 751 415.898 889 415.935 293 415.995 938 416.080 780
1 190.719 321 190.735 267 190.783 089 190.862 739 190.974 135
1.5 104.404 517 104.427 341 104.495 769 104.609 681 104.768 874
2 65.245 553 65.277 168 65.371 918 65.529 521 65.749 510
2.5 44.945 030 44.986 838 45.112 071 45.320 150 45.610 129
3 33.303 511 33.356 491 33.515 080 33.778 229 34.144 222

3 0.5 415.889 786 415.914 059 415.962 588 416.035 338 416.132 258
1 190.723 31 190.755 196 190.818 940 190.914 475 191.041 704
1.5 104.410 22 104.455 860 104.547 051 104.683 633 104.865 367
2 65.253 459 65.316 665 65.442 888 65.631 753 65.882 705
2.5 44.955 49 45.039 054 45.205 805 45.454 976 45.785 438
3 33.316 76 33.422 634 33.633 677 33.948 503 34.365 078

Table 4. 2D and 3D k-state energies, in h̄ = m = 1 units, for the potential V (q) =
(q2 + 1000/q3/2)/2, where EP represents PSLET results, equation (21), and l̄ 2E(−2) is its zeroth-
order approximation, E[4, 4] shows the effect of the P 4

4 (1/l̄) Padé approximant, equation (22).

D k l l̄ 2E(−2) EP E[4, 4]

2 1 0 105.404 19 108.150 83 108.150 83
1 105.674 66 108.173 79 108.173 79
2 105.969 40 108.242 63 108.242 63
3 106.289 70 108.357 21 108.357 21

3 0 105.536 48 108.156 57 108.156 57
1 105.818 92 108.202 48 108.202 48
2 106.126 28 108.294 21 108.294 21
3 106.459 83 108.431 60 108.431 60

2 2 0 107.387 6 111.901 7 111.901 7
1 107.738 2 111.924 8 111.924 8
2 108.112 7 111.994 0 111.994 0

3 0 107.560 0 111.907 5 111.907 4
1 107.922 4 111.953 6 111.953 6
2 108.309 2 112.045 9 112.045 9

interdimensional degeneracies (equations (3) and (4)) or directly, the dimensionality D in
lD , we display the energies for V (q) = (q2 + 10/q1.9)/2 in table 2. Clearly, our results
compare excellently with those from direct numerical integrations. However, it should be
noted that in [5] we have calculated the energy series up to E(4)0,l /l̄

4 correction. Therefore,
slight discrepancies obtain between the present results in table 1 and those reported in table 2
of [5].

Adhering to the implicated wisdom in equations (3) and (4), that the two- and three-
dimensional cases are the basic ingredients of the energy ladder at larger dimensions, we
report (in table 3) the 2D and 3D nodal bound-state energies when the coupling c2 = 1000
and b = 0.5, 1, . . . , 2.5, 3. The stability of the last three approximants of the Padé sequence
indicates that the results are exact. For more details on this issue the reader may refer to
[20, 24]. Nevertheless, our results E0,0 for the 3D spiked harmonic oscillator are in exact
accord with those from direct numerical integrations [2]. Following the same strategy, we
display in table 4 the k = 1 and 2 nodal bound-state energies for V (q) = (q2 + 1000/q3/2)/2.
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Eventually, the leading term of PSLET, l̄ 2E
(−2)
k,l , turns out to be a good starting approximation.

Tables 1, 2 and 4 bear this out.
Moreover, for the spiked harmonic oscillator, with b = 2, one would rewrite the effective

potential term (l(l + 1)+ c2)/2q2 +q2/2 as l′(l′ + 1)/2q2 +q2/2 with l′ = − 1
2 +

√(
l + 1

2

)2
+ c2.

For this particular case, the PSLET procedure yields, respectively, w = 2, β = −(
2k + 3

2

)
,

l̄ = 2k + l′ + 3
2 , q2

0 = l̄, l̄ 2E
(−2)
k,l′ = 2k + l′ + 3

2 (the exact well known energies)

E
(0)
k,l′ = E(1)k,l′ = · · · = E(8)k,l′ = · · · = E(n)k,l′ = 0 (25)

and when k = 0, for example,

U0,l′(x) = − 1
2

(
y − 1

2y
2 + 1

3y
3 − 1

4y
4 + 1

5y
5 − 1

6y
6 + 1

7y
7 − 1

8y
8 + · · ·)

+ l̄
(
y − 1

2y
2 + 1

3y
3 − 1

4y
4 + 1

5y
5 − 1

6y
6 + 1

7y
7 − 1

8y
8 + · · ·) − 1

2 l̄y
2 − l̄y (26)

where y = xl̄ −1/2. Obviously, the terms in parentheses in equation (26) are the infinite
geometric series expansions for ln(1 + y). Equation (26) thus becomes

U0,l′(x) = ln(1 + y)−1/2 + ln(1 + y)l̄ − l̄y − 1
2 l̄y

2. (27)

Hence equation (8) (with F0,l′(x) = 1 from (11)) reads

�0,l′(q) = N0,l′ q
l′+1 e−q2/2 (28)

the exact well known solutions [31], where N0,l′ are the normalization constants. Proceeding
exactly as above, one could obtain the well known solutions with k � 1. However, this already
lies far beyond the scope of our present proposal.

Hall and Saad ([1], first reference) have therefore used, indirectly, the transformation of
the angular momentum quantum number and cast the Hamiltonian of the spiked harmonic
oscillator (1) as

H = −1

2

d2

dq2
+
lH(lH + 1)

2q2
+
q2

2
+
c2

2qb
− A

2q2
(29)

where lH = − 1
2 +

√(
l + 1

2

)2
+ A, and A is used as a further variational refinement in their

generalized variational analysis method. They found thatA = c2 is a good general estimate for
the value ofA. Indeed, this optimum value ofA, which substantially reduced the number of the
basis functions needed for a given accuracy in [1], first reference, enhances the convergence
and accuracy of approximation method recipes. Practically, it minimizes the effect of the
perturbation term c2q−b over the harmonic oscillator one (with the irrational quantum number
l′), especially for values of b −→ 2. In table 5, the results of PSLET are obtained using
such prescription. They compare excellently with direct numerical integrations and do not
contradict the upper bounds from the generalized variational estimates.

4. Concluding remarks

We have generalized our pseudoperturbative shifted-l expansion technique PSLET [5, 20–22]
for states with an arbitrary number of nodal zeros, k � 0. Starting with the central force
problem, represented by the radial Schrödinger equation, and augmenting the orbital angular
momentum by l −→ lD = l+(D−3)/2, we have incorporated interdimensional degeneracies.
To test the performance of PSLET, we have treated the spiked harmonic oscillator problem in
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Table 5. k = 2 and l = 1, 2 energies, in units where h̄ = m = 1, for the potential
V (q) = (q2 + 10/q2.1)/2, where E2,l,P represents PSLET results, equation (21), E2,1,V from
VAM, and E2,1,ex from DNI [1], first reference. E2,l [4, 4] shows the effect of the P 4

4 (1/l̄) Padé
approximant, equation (22).

D E2,1,ex E2,1,V E2,1,P E2,1[4, 4] E2,2,P E2,2[4, 4]

2 16.543 629 16.543 648 16.541 951 16.543 627 17.380 817 17.381 708
3 16.904 445 16.904 446 16.903 172 16.904 444 17.954 856 17.955 444
4 17.381 708 17.381 709 17.380 817 17.381 708 18.606 695 18.607 067
5 17.955 444 17.955 446 17.954 856 17.955 444 19.320 461 19.320 691
6 18.607 067 18.607 070 18.606 695 18.607 067 20.083 266 20.083 406
7 19.320 691 19.320 693 19.320 461 19.320 691 20.884 936 20.885 021
8 20.083 406 20.083 407 20.083 266 20.083 406 21.717 556 21.717 608
9 20.885 021 20.885 022 20.884 936 20.885 021 22.574 996 22.575 027

10 21.717 608 21.717 608 21.717 556 21.717 608 23.452 505 23.452 524

D dimensions and used results from direct numerical integrations and generalized variational
analysis methods [1, 2] as a comparison. The comparison is satisfactory.

The salient features of the attendant proposal PSLET are in order.
It avoids troublesome questions such as those pertaining to the nature of small parameter

expansions, the trend of convergence to the exact numerical values (marked in tables 1–3 and
5), the utility in calculating the eigenvalues and eigenfunctions in one batch to sufficiently
higher orders (documented through the solution (28) of (1), with b = 2) and the applicability
to a wide range of potentials. Provided that the potential V (q) gives rise to one minimum of
E
(−2)
k,l and an infinite number of bound states. Moreover, beyond its promise of being quite

handy (on the computational and practical methodical sides), it offers a useful perturbation
prescription where the zeroth-order approximation l̄ 2E

(−2)
k,l inherits a substantial amount of

the total energy.
The above has been a very limited review and a number of other useful and novel

approaches such as those presented by Papp [9, 32] and Bender and Wu [33], have not been
touched on.

Finally, the scope of applicability of PSLET extends beyond the present D-dimensional
spiked harmonic oscillator model. It could be applied to angular momentum states of multi-
electron atoms [34–36], relativistic and non-relativistic quark–antiquark models [37], etc.

Appendix

Although some of the following expressions have appeared in previous articles [5, 20–22], we
would like to repeat them to make this paper self-contained.

Expansions about x = 0 (i.e. q = q0), yield

1

q2
=

∞∑
n=0

(−1)n
(n + 1)

q2
0

xn l̄ −n/2 (A1)

V (x(q)) =
∞∑
n=0

(
dnV (q0)

dqn0

)
(q0x)

n

n!
l̄ −n/2. (A2)

Equation (5) thus becomes[
−1

2

d2

dx2
+
q2

0

l̄
Ṽ (x(q))

]
�k,l(x) = q

2
0

l̄
Ek,l�k,l(x) (A3)
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with

q2
0

l̄
Ṽ (x(q)) = q2

0 l̄

[
1

2q2
0

+
V (q0)

Q

]
+ l̄ 1/2B1x + B2x

2 + 1
2 (2β + 1)

+(2β + 1)
∞∑
n=1

(−1)n 1
2 (n + 1)xnl̄ −n/2 +

∞∑
n=3

Bnx
nl̄ −(n−2)/2

+β(β + 1)
∞∑
n=0

(−1)n 1
2 (n + 1)xnl̄ −(n+2)/2 (A4)

Bn = (−1)n 1
2 (n + 1) +

(
dnV (q0)

dqn0

)
qn+2

0

n!Q
. (A5)

Equation (A3), along with (A4) and (A5), is evidently the one-dimensional Schrödinger
equation for a perturbed harmonic oscillator[

−1

2

d2

dx2
+

1

2
w2x2 + ε0 + P(x)

]
Xk(x) = λkXk(x) (A6)

where w2 = 2B2,

ε0 = l̄
[

1

2
+
q2

0V (q0)

Q

]
+

2β + 1

2
+
β(β + 1)

2l̄
(A7)

andP(x) represents the remaining terms in equation (A4) as infinite power series perturbations
to the harmonic oscillator. One would then imply that

λk = l̄
[

1

2
+
q2

0V (q0)

Q

]
+

[
1
2 (2β + 1) + (k + 1

2 )w
]

+
1

l̄

[
1
2β(β + 1) + λ(0)k

]
+

∞∑
n=2

λ
(n−1)
k l̄ −n

(A8)

and

λk = q2
0

∞∑
n=−2

E
(n)
k,l l̄

−(n+1). (A9)

Hence, equations (A8) and (A9) yield

E
(−2)
k,l = 1

2q2
0

+
V (q0)

Q
(A10)

E
(−1)
k,l = 1

q2
0

[
1
2 (2β + 1) + (k + 1

2 )w
]

(A11)

E
(0)
k,l = 1

q2
0

[
1
2β(β + 1) + λ(0)k

]
(A12)

E
(n)
k,l = λ(n)k /q2

0 n � 1 (A13)

where q0 is chosen to minimize E(−2)
k,l , i.e.

dE(−2)
k,l

dq0
= 0 and

d2E
(−2)
k,l

dq2
0

> 0. (A14)
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Thereby, V (q) is assumed to be well behaved so that E(−2)
k,l has a minimum q0 and there are

well defined bound states. Equation (A14) in turn gives, with l̄ = √
Q

lD − β =
√
q3

0V
′(q0). (A15)

Consequently, the second term in equation (A4) vanishes and the first term adds a constant to
the energy eigenvalues. It should be noted that the energy term l̄ 2E

(−2)
k,l corresponds roughly

to the energy of a classical particle with angular momentum Lz = l̄ executing circular motion
of radius q0 in the potential V (q0). It thus identifies the zeroth-order approximation, to
all eigenvalues, as a classical approximation and the higher-order corrections as quantum
fluctuations around the minimum q0, organized in inverse powers of l̄. The next correction to
the energy series, l̄E(−1)

k,l , consists of a constant term and the exact eigenvalues of the harmonic

oscillatorw2x2/2.The shifting parameter β is determined by choosing l̄E(−1)
k,l = 0. This choice

is physically motivated. In addition to its vital role in removing the singularity at l = 0, it
also requires agreement between PSLET eigenvalues and eigenfunctions with the exact well
known ones for the harmonic oscillator and Coulomb potentials. Hence

β = − [
1
2 +

(
k + 1

2

)
w

]
(A16)

where w = √
3 + q0V ′′(q0)/V ′(q0), and the primes of V (q0) denote derivatives with respect

to q0. Then equation (A4) reduces to

q2
0

l̄
Ṽ (x(q)) = q2

0 l̄

[
1

2q2
0

+
V (q0)

Q

]
+

∞∑
n=0

v(n)(x) l̄ −n/2 (A17)

where

v(0)(x) = B2x
2 + 1

2 (2β + 1) (A18)

v(1)(x) = −(2β + 1)x + B3x
3 (A19)

and for n � 2

v(n)(x) = Bn+2 x
n+2 + (−1)n (2β + 1) 1

2 (n + 1) xn + (−1)n 1
2β(β + 1) (n− 1) x(n−2). (A20)
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